Identitaa trigonométrica

Una identitaa trigonométrica l'è una relazziun implicaant da li funziun trigonométrich e verificada par tüti li valuur da li variàbil í cuntegnüdi. Sti identitaa a pòden vess ütil, cur che una espressiun cunteneent da li funziun trigonométrich la gh-a besogn da vess semplificada. Li funziun trigonométrich inn un bell puu ütil in intégrazziun, par integrà da li funziun «non trigonométrich»: un prucedimeent abitüaal, al cunsist a fà un cambi da variàbil ütilizant una funziun trigonométrica, e a semplificà da séguit l'integrala utegnüda cun li identitaa trigonométrich.

Notazziun: cun li funziun trigonométrich, a definiremm sin2, cos2, etc., li funziun tai che par ògni real x, sin2(x) = (sin(x))2, ...

A partí da li definizziunModifega

 
 

Periodicitaa, paritaaModifega

Al è fàcil vidé sül círcul trigonométrich che:

 
 
 
 

(la demustrazziun la depeent sü la definizziun da li funziun cosinus, sinus)

In física, al è important savé che tüti li cumbinazziun lineaal da òndi sinusoidaal da la medésima períoda, ma da fasa difereent, l'è, da l'istessa manera, una ònda sinusoidaal da la medésima períoda ma cunt una fasa diversa.

In d'òlter tèrmin :

 

intúe

 

A partí dal teoréma da PitàgoraModifega

 

Teuréem d'adizziunModifega

Ul medi ul püssee sveelt par pruvà sti fòrmül al è d'ütilizà li fòrmül d' Euler in anàlisi cumplessa.

La fòrmüla da la tangeent la seguiss a partí da li òltri dò:

 
 
 

Fòrmül da l'angül dòpiModifega

Sti fòrmül a pòden vess utegnüdi rempiazzaant   inti teuréem d'adizziun, e ütilizaant ul teoréma da Pitàgora par li ültim dò, u anca ütilizaant la fòrmüla da de Moivre cunt  .

 
 
 

Fòrmül da l'angül mültipliModifega

Si Tn è ul n-ésim polinòmi da Chebychev alura

 

La fòrmüla da de Moivre la sa scriif:

  int-úe i a l'è l'ünitaa imaginària.


Ul nücli da Dirichlet Dn al è la funziun definida par :

par ògni real x,  

Ul prudott da cunvulüzziun da una funziun da quadraa integràbil e da períoda 2p cul nücli da Dirichlet a l'è l'istess che la suma d'òrdin n da la suva série da Fourier.

Fòrmül da redüzziun da li putenziModifega

Sti fòrmül a permétten da scriif cos2(x) e sin2(x) in funziun dal cosinus da l'angül dòpi.

 
 

Fòrmül da l'angül metaaModifega

Rempiazzaant x par x/2 inti fòrmül da redüzziun da li putenzi, e ricavaant da séguit l'espressiun da cos(x/2) e sin(x/2), nü utenemm:

 
 

Mültipliemm tan(x/2) par 2cos(x/2) / ( 2cos(x/2)) e sü(b)stitüemm sin(x/2) / cos(x/2) par tan(x/2). Ul nümeratuur al è alura istess a sin(x), grazzia a la fòrmüla da l'angül dòpi; ul denominatuur al è istess a 2cos2(x/2) - 1 + 1 che, da l'istessa manera, al è istess a cos(x) + 1.

La secònda fòrmüla la veen da la prima mültiplicaant par sin(x) / sin(x) e semplificaant ütilizaant ul teoréma da Pitàgora.

 

Fòrmül implicaant la « tangeent da l'arc metaa »Modifega

Si punemm  , truvemm:

 
 
 

sti fòrmül permétten da semplificà di calcüi trigonométrich arivaant a di calcüi sura di frazziun razziunaal. I permétten da l'istessa manera da determinà ul cungjuunt di puunt razziunaal dal círcul ünitaa.

Dai prudott a li summModifega

Sti fòrmül a pòden vess demustraa desvelüpaant i mémber da drita pai fòrmül d'adizziun :

 
 
 

Da li summ ai prudottModifega

Al è assee da cambià x par (x + y) / 2 e y par (xy) / 2 inta li fòrmül da trasfurmazziun da prudott in suma.

 
 
 
 

Funziun trigonométrich inversiModifega

Si x > 0 alura

 

Si x < 0 alura

 

Da plüü, per ògni x,y, al var

 

Un bell puu d'identitaa símil a   a pòden vess utegnüüt a partí dal teoréma da Pitàgora :

Taula da fòrmül da cunversiun
sin cos tan csc sec cot
sin            
cos            
tan            
csc            
sec            
cot            

Identitaa senza variàbilModifega

Richard Feynman, retegnüü d'avé imparaa beníssim li fòrmül da trigonometría, al s'è sempru recurdaa da chesta cüriusa identitaa:

 

Una taal identitaa a l'è un esempi d'identitaa che la cunteen nò da variàbil, e la s'obteen a partí da l'üguaglianza??? :

 

Li relazziun segueent a pòden, da l'istessa manera, vess consideradi cuma da li identitaa senza variàbil :

 
 

Sa trœva che la mesüra in degree di àngui la dà mía una fòrmüla püssee sémplis che la mesüra in radiaant, cur che a cunsideremm chesta identitaa cun 21 ai denominatuur:

 

Ma i fa(c)tuur 1, 2, 4, 5, 8, 10 a pòden fà pensà ai nümer inter inferiuur a 21/2 che gh'ann mía da fa(c)tuur cummün cun 21. I ültim esempi inn cunseguenzi d'un resültaa da basa sura i polynòmi cyclotòmich; i cosinus inn li parti reaal di radiis da sti polinomi ; la suma di zéer la dà la valuur da la funziun da Möbius in 21 (ín dal cas precedeent); dumà la metaa da li radiis inn preseent in la relazziun precedeent.

AnàlisiModifega

In anàlisi, al è esenziaal che i àngui che aparíssen cuma argümeent da li funziun trigonométrich, a síen mesüraa in radiaant; si a inn mesüraa in degree u int importa-mía quaal òltra ünitaa, alura li relazziun reportaa chí-da-sòta a devénten fòlsi. Si li funziun trigonométrich inn definidi geometricameent, alura li sœu derivadi a pòden vess utegnüdi demustraant prealabilmeent sti límit :

 

e

 

e ütilizaant la definizziun cunt i límit da la derivada in un puunt, inscí cuma i teuréem d'adizziun; si li funziun trigonométrich a inn definidi par li sœu série da Taylor, alura li derivadi a pòden vess utegnüdi derivaant li sérii inteer tèrmin a tèrmin.

 

Li òltri funziun trigonométrich a pòden vess derivadi ütilizaant li identitaa precedeent e li régul da derivazziun, par esempi :

 
 
 
 

Li identitaa sura li integrali a pòden vess truvaa in la Taula da l'integrali.